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We prove the impossibility of recent attempts to decouple the Replica Symmetry
Breaking (RSB) picture for finite-dimensional spin glasses from the existence of
many thermodynamic (i.e., infinite-volume) pure states while preserving another
signature RSB feature—space filling relative domain walls between different
finite-volume states. Thus revisions of the notion of pure states cannot shield the
RSB picture from the internal contradictions that rule out its physical correct-
ness in finite dimensions at low temperature in large finite volume.
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1. INTRODUCTION

In this paper we will describe what the mean-field picture and its central
component, replica symmetry breaking (RSB), must mean for short-ranged
spin glasses in all finite dimensions—and why it cannot hold for these
systems.

In a recent paper (1) (hereafter [MPRRZ]), Marinari, Parisi, Ricci-
Tersenghi, Ruiz-Lorenzo, and Zuliani have provided the most extensive
description of the mean-field RSB picture offered to date. In response to
earlier demonstrations(2–6) (hereafter [NS96a], [NS96b], [NS97a], [NS97b],
and [NS98], respectively) by the authors that the mean-field RSB picture



cannot describe the structure of thermodynamic, i.e., infinite-volume, pure
states at temperatures T > 0 or ground states at T=0 of spin glasses in any
finite dimension d, [MPRRZ] proposed (see also Appendix 1 of the paper
by Marinari et al. (7)) that RSB is not meant to provide such a description,
but instead applies only to the structure of ‘‘finite-volume pure states,’’
which are the relevant physical objects. An unambiguous definition of
finite-volume pure states was not provided, but it was emphasized that they
were different from the ‘‘pure states in an infinite system,’’ i.e., the usual
thermodynamic pure states.

However, in Section 6, we present a new proof (whose applications go
well beyond spin glasses alone), which, when applied in the current context,
shows rigorously that the primary claims of [MPRRZ] (1) are incompatible
with each other. That is, if the claim of nontrivial link overlap (PLe (q)) for
large L is valid, it must give rise to multiple ground and pure states in the
usual thermodynamic sense (cf. Appendix A), as traditionally envisioned
(see, for example, the review article (8) by Binder and Young, hereafter
[BY], or the book (9) by Mezard, Parisi, and Virasoro, hereafter [MPV]).
Therefore, whether or not a new interpretation of the mean-field RSB
theory in terms of ‘‘finite-volume pure states’’ can ever be precisely for-
mulated, the more usual infinite-volume interpretations cannot be avoided.
But a mean-field structure for multiple thermodynamic states has been ruled
out by the authors’ previous arguments. (2–6) Mean-field RSB theory there-
fore cannot apply to realistic (i.e., finite-dimensional short-ranged) spin
glasses.

The paper is organized as follows. In Section 2 we introduce many of
the terms and concepts needed for later sections, and provide an abbre-
viated review of the issues concerning pure states within the framework of
mean-field RSB theory. Section 3 discusses the behavior of interfaces, or
domain walls, in finite volumes and how they can (or cannot) give rise to
multiple thermodynamic ground or pure states. Section 4 discusses the
notion of ‘‘finite-volume pure states’’ introduced in [MPRRZ], (1) and
provides an initial critique of this concept, and Section 5 reviews the pre-
dictions of mean-field RSB theory for interface properties. In Section 6 we
formally state our theorem that the mean-field RSB theory in fact must
predict multiple thermodynamic pure state pairs with properties that have
been previously ruled out; and in Section 7 we discuss the implications of
our theorem and present our conclusion.

We also include two appendices. Appendix A is a brief summary of the
definitions and properties of finite-volume Gibbs states, infinite-volume
Gibbs states, and pure states. These play a major role in the text. Appendix B
is a glossary providing brief definitions of other terms frequently used in the
text; some are in common usage in the literature, but most are less so.
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2. BACKGROUND AND REVIEW

In this section we provide a review of the concepts and terms that will
be used throughout, and provide an abbreviated overview of recent devel-
opments in the equilibrium theory of finite-dimensional spin glasses, as
they pertain to the current discussion. Detailed presentations can be found
in the references cited. This section is included so that this paper is reason-
ably self-contained; readers familiar with these topics may want to skip
ahead to Section 3.

For specificity, we focus on the Edwards–Anderson (10) (EA) Ising spin
glass, whose Hamiltonian is given by

H=− C
Ox, yP

Jxysxsy, (1)

where the couplings Jxy are independently chosen from a Gaussian distri-
bution with mean zero and variance one, the sum is over only nearest
neighbors on the d-dimensional cubic lattice Zd, and the spins sz=±1. We
note for later, however, that our results apply to a wide range of models,
including systems other than spin glasses.

2.1. Essential Features of the Mean-Field RSB Picture

Nontrivial replica symmetry breaking within the ‘‘mean-field picture’’
is associated with a number of remarkable properties, including the exis-
tence of many equilibrium states, non-self-averaging of overlap functions,
ultrametricity of pure state overlaps, and several others less relevant to the
current discussion. This picture is believed to describe the low-temperature
phase of the infinite-ranged Sherrington–Kirkpatrick (11) model, where the
sum in the Hamiltonian Eq. (1) now runs over all pairs of spins, and the
variance of the coupling distribution is rescaled to provide a sensible
thermodynamic limit. We assume that the reader is largely familiar with
this picture, and refer her/him to [BY] (8) or [MPV] (9) for an extensive and
detailed description. Throughout this paper we will refer to this picture and
its variations as the mean-field picture, to adhere to common usage in the
literature; but it should be kept in mind that it is based on the Parisi solu-
tion (12–15) of the Sherrington–Kirkpatrick infinite-ranged model.

Numerous authors have asserted that mean-field-like RSB should
describe the broken symmetry of the low-temperature phase of more realistic
short-ranged, finite-dimensional spin glass models as well. Its basic fea-
tures, for a fixed T < Tc, have been described in many places (see, e.g.,
refs. 1, 7–9, 16–23)) and can be summarized as follows: (1) the existence of
many equilibrium states not related by any simple symmetry transformation,
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and whose number grows without bound as system size L Q.; (2) for
fixed coupling realization J, a nontrivial probability distribution PJ(q),
supported on countably many values qab, for the spin overlap between two
different replicas; (3) non-self-averaging, i.e., J-dependence, of PJ(q), so
that averaging PJ(q) over all J yields a P(q) supported on a continuum of
values between ±qEA, with nonzero weight at q=0 and d-function spikes
at ±qEA; (4) ultrametricity of the spin overlaps qab among the equilibrium
states; (5) nontrivial edge overlap Pe(qe); for example, if one chooses at
fixed J a ground state from a cube with periodic boundary conditions, and
a second ground state from the same cube with antiperiodic boundary
conditions, then there would be a nonvanishing density (as L Q.) of
bonds satisfied in one but not the other ground state.

To arrive at these features, the mean-field RSB picture postulates, as
in [MPRRZ], (1) that at fixed T the finite-volume Gibbs state rLJ in LL, the
cube of side-length L centered at the origin (we henceforth assume periodic
boundary conditions for specificity, but in fact our arguments will apply to
any boundary conditions chosen independently of J), is approximately a
mixture of many pure states (we defer until later the question of what this
actually means):

r (L)J %C
a

Wa
J, Lr

a
J (2)

where Wa
J, L represents the Boltzmann weight in r

(L)
J of pure state raJ. The

finite-volume overlap distribution PLJ(q) is approximately the correspond-
ing mixture of many d-functions:

PLJ(q) %C
a, c

Wa
J, LWc

J, L d(q−qacJ), (3)

where qacJ is the overlap between the states a and c:

qacJ % |LL |−1 C
x ¥ LL

OsxP
a OsxP

c; (4)

here |LL | is the number of sites in LL.
An edge, or link, overlap distribution function can be similarly con-

structed. (1, 16–18) For simplicity, consider a ground state pair ±sL in LL with
periodic boundary conditions, and a second ground state pair ±sŒL obtained
in LL, e.g., with antiperiodic boundary conditions. There will be a relative
domain wall (or walls) between the pairs ±sL and ±sŒL, consisting of the set
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of bonds OxyP in the dual lattice satisfied in one and not the other ground
state pair; that is, they obey

sLxs
L
y=−sŒLxs

−L
y . (5)

The link overlap between ±sL and ±sŒL is

qs
L
s
−L

J, e =|EL |−1 C
Ox, yP ¥ EL

sLxs
L
ys
−L
x s

−L
y (6)

which is equal to one when sL=±sŒL and smaller than one otherwise.
Here EL is the edge set of, and |EL | is the number of edges in, LL. The edge
overlap distribution function is then given by

PLJ, e(qe) %C
a, c

Wa
J, LW

c
J, Ld(q−qacJ, e) . (7)

While this interesting picture at first seems reasonably clear, on closer
inspection there are numerous problems in interpretation when applied to
realistic models. Much of [MPRRZ] (1) is devoted to arriving at a definition
of an ‘‘equilibrium’’ or ‘‘pure’’ state within the mean-field RSB picture; but
leaving that issue aside for now, there are numerous other questions that
could affect interpretation of numerical measurements. For example, by
what procedure are states, or replicas, chosen, and from what distribution?
In computing P(q), what does one mean by the ‘‘infinite-volume limit’’?
What is meant by non-self-averaging when its presence or absence may
depend on the sequence of steps used to compute overlaps? Until these
questions are clarified, we are forced to leave most of the above equations
as approximate relations.

To illustrate, consider the situation at T=0. For fixed J and LL with
periodic boundary conditions, there will be a single pair of ground states
±sL. The overlap function will therefore be a pair of d-functions at ±1 for
all L, and so the limiting P(q) is that same pair of d-functions, indepen-
dently of J. Does this imply a single pair of ground states, as predicted by
the droplet/scaling picture of Macmillan, (24) Bray and Moore, (25, 26) Fisher
and Huse, (27–30) and others? Not necessarily, because if there were many
ground state pairs then ±sL would change chaotically with L, though for
any single L one would see only a single pair. The presence or absence of
this chaotic size dependence (31) (hereafter [NS92]) is a reliable test (5, 31) of
whether there are, respectively, many ground state pairs or only a single
pair. But if there are many ground state pairs, can one construct P(q) in
order to see them?
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2.2. Standard Interpretation of the RSB Mean-Field Picture

The most straightforward, and natural, interpretation of the features
of the RSB mean-field picture described above is that the ‘‘pure’’ states in
Eq. (2) are the usual thermodynamic pure states, which are easily and
unambiguously defined for the EA model (see, e.g., Appendix A of this
paper and [NS97a, NS97b, NS98] (4–6)). In this interpretation, for almost
every fixed J there would be an infinite number of these states. The spin
overlap distribution function would be nontrivial in the sense described in
the preceding section, and would satisfy the properties of non-self-averag-
ing and ultrametricity (including at T=0). The edge overlap distribution
function would similarly be nontrivial and non-self-averaging. Procedures
for constructing overlap distributions are provided in [NS96a]. (2)

This interpretation has generally been the standard view (see, e.g.,
refs. 8, 9, 20, 21, 32, and 33), and is one way to answer the questions posed
in the previous section. It allows us to replace the approximate relation
Eq. (2) with an equality

rJ(s)=C
a

Wa
Jr

a
J(s), (8)

where rJ(s) is an infinite volume mixed Gibbs state for a particular coupl-
ing realization J, the raJ are infinite-volume pure states for that J, and the
Wa

J their corresponding weights in rJ.
The other equations in Section 2.1 are similarly replaced with exact

relations. The overlap random variable becomes

Q= lim
LQ.

|LL |−1 C
x ¥ LL

sxs
−

x (9)

where s and sŒ are chosen from the product distribution rJ(s) rJ(sŒ). If s
is drawn from raJ and sŒ from rcJ, then it follows that the overlap is the
constant

qacJ= lim
LQ.

|LL |−1 C
x ¥ LL

OsxP
a OsxP

c. (10)

The probability distribution PJ(q) of Q is therefore given by

PJ(q)=C
a, c

Wa
JWc

J d(q−qacJ). (11)

Edge overlap distribution functions are similarly defined.
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However, it was rigorously shown in [NS96a] (2) that this standard
interpretation of the mean-field picture cannot hold at any temperature in
any finite dimension, because the PJ(q) of Eq. (11) must be self-averag-
ing, i.e., the same for almost every J. This also rules out the possibility
of nontrivial ultrametricity among the thermodynamic pure states. We
note that the (nonrigorous) arguments of Parisi and Ricci-Tersenghi, (33)

claiming to support ultrametricity among all the equilibrium states of
finite-dimensional spin glasses, are in fact also consistent with trivial
ultrametricity, such as that displayed in the droplet/scaling two-state
picture or the many-state chaotic pairs picture (cf. Section 2.4 later). One
must therefore adopt an unconventional interpretation of the mean-field
RSB picture if there is to be any hope of its application to realistic spin
glasses.

2.3. The Nonstandard Interpretation of the Mean-Field

RSB Picture

The standard interpretation just described is a natural extrapolation to
large lengthscales of numerical simulations necessarily done on cubes LL
with relatively small L. What is typically done numerically, of course, is to
generate (usually with periodic boundary conditions, assumed here for
specificity) finite-volume equilibrium Gibbs states (see Appendix A) in LL
and then to measure the overlap distribution for fixed J; then repeat the
procedure for different J’s and compute the disorder-averaged PL(q).
Doing this for several different L’s allows one to examine finite-size scaling
and other properties of overlap functions.

Numerically, one has no choice but to follow this or some similar
procedure; but in [NS96b] (3) it was shown that evidence for RSB arising
from this approach can correspond to more than one thermodynamic
picture. The above procedure, if extrapolated to arbitrarily large L, gives
rise to a P(q)=limLQ. PL(q) without any explicit or prior construction of
thermodynamic states. (Another procedure that does first construct states
and then computes overlaps is given in [NS96a] (2)).

In these numerical computations, replica symmetry is of necessity broken
before the L Q. limit is taken. Guerra (34) has pointed out that changing
the order of these limits can be quite significant. That this interchange of
limits (3) can lead to a new thermodynamic picture of the spin glass phase
does not seem to have been appreciated prior to [NS96a, NS96b].

Based on these considerations, a new, nonstandard interpretation of the
mean-field RSB picture was described in detail in Section 7 of [NS97b]; (5)

we provide only a brief summary here. It is a maximal mean-field picture,
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preserving mean-field theory’s main features, as discussed in Section 2.1,
although in an unusual way. The most natural description of this non-
standard interpretation is in terms of the metastate, described in the next
section, but in order to simplify the discussion we forego use of the
metastate here.

As a starting point, then, this interpretation would mean that in any
large LL, the Gibbs state is an approximate decomposition over many
thermodynamic pure states:

r (L)J (s) %C
a

Wa, L
J r

a
J(s), (12)

where a few states dominate the sum in any fixed L. The overlap distribu-
tion in LL for fixed J, given by Eq. (3), is nontrivial: for any fixed, large
L it would be a sum of several d-functions, and the locations of these
d-functions would satisfy ultrametricity increasingly accurately as L Q..
When averaged over J at fixed L, this distribution would broaden into a
continuum between two d-functions at ±qEA.

Equation (12) and the properties listed after it all hold equally well
for the standard interpretation of mean-field RSB described in Section 2.2.
The difference between the standard and nonstandard interpretations
arises from their thermodynamics; the straightforward extrapolation to
infinite volumes characteristic of the standard interpretation is absent in
the nonstandard picture. In the latter case, the infinitely many thermody-
namic pure states are grouped into ‘‘families’’ of mixed states (the C’s of
Section 2.4), each of which individually has the properties listed in the
preceding paragraph. The union of all of these families, which loses these
properties, comprises the thermodynamic structure of the nonstandard
interpretation.

The crucial conceptual point is that the resulting ensemble of overlap
distributions remains independent of J. So while overlap distributions still
do not depend on J, one now replaces the usual notion of non-self-averag-
ing overJ’s with a nonstandard one: that is, averaging over L’s for fixedJ.
It can be shown that this picture must have uncountably many pure states
and overlaps, so that ultrametricity would not hold in general (2) among
any three pure states chosen at fixed J, unlike in the standard interpretation
(see, for example, the papers of Vincent et al. (35) and of Badoni et al. (36)).
Instead, each large LL would pick out a subset of these (one of the families
discussed above) that do satisfy ultrametricity.

Unfortunately for the mean-field approach, it can also be shown that
this picture cannot hold at any temperature in any dimension, as discussed
in the next section.

220 Newman and Stein



2.4. Metastates, Chaotic Pairs, and the Simplicity of P(q)

To explain why even the nonstandard interpretation cannot be valid,
we need to introduce the concept of metastate, discussed in detail in
[NS96b, NS97a, NS97b, NS98]. (3–6) (For some uses of this concept in mean
field models, see the papers of Külske, (37, 38) Bovier and Gayrard, (39) and
Bovier et al. (40)) Metastates enable us to relate the observed behavior of a
system in large but finite volumes with its thermodynamic properties. This
relation is relatively straightforward for systems with few pure states or for
those whose states are related by well-understood symmetry transforma-
tions, as typically occurs in homogeneous systems. Experience with these
has mostly guided intuition in the case of disordered systems. However,
one of our early results is that, in the presence of many pure states not
related by any clear-cut symmetry transformations, the relation between
the system’s thermodynamic properties and its behavior in large but finite
volumes may be non-obvious.

This is primarily due to the following result of [NS92]: (31) if a system
has many, non-symmetry-related, pure states, the sequence of finite-volume
Gibbs measures generated using coupling-independent boundary condi-
tions will generally not converge to a single limiting thermodynamic state as
L Q.. This is the phenomenon of chaotic size dependence, mentioned in
Section 2.1. In the metastate approach, rather than avoid this problem, we
exploit it by focusing on an ensemble of (pure or mixed) thermodynamic
states. This approach, based on an analogy to chaotic dynamical systems,
allows the construction of a limiting measure. Hence the term metastate—
while a thermodynamic state is a probability measure on infinite-volume
spin configurations (see Appendix A), this new limiting measure is one on
the thermodynamic states themselves.

This infinite-volume measure has a particular usefulness in the context
of finite volumes because it tells us the likelihood of appearance of any
specified thermodynamic state, pure or mixed, in a typical large volume.
More precisely, it provides a probability measure for all possible n-point
correlation functions contained in a box (or ‘‘window’’), centered at the
origin, whose sides are sufficiently far from any of the boundaries so that
finite size or boundary effects do not appreciably affect the result. (We
discuss this in more detail in Section 2.6.)

There are several ways of constructing metastates. In [NS96b, NS97a,
NS97b] (3–5) we introduced the empirical distribution approach. This consi-
ders, at fixedJ, a sequence of volumes with coupling-independent boundary
conditions.Each finite-volumeGibbs stater (L1)J , r (L2)J ,..., r (LN)J in the sequence
is given weight N−1. This allows us to construct a histogram of finite-
volume Gibbs states; it was shown in [NS96b, NS97a] that this histogram
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converges to a probability measure oJ on the thermodynamic states as
N Q.. A finite-volume Gibbs state in a particular (large) volume approx-
imates (deep in its interior—cf. the remarks in the preceding paragraph)
some infinite-volume thermodynamic state C restricted to that volume. The
resulting metastate oJ therefore specifies the fraction of cube sizes that the
system spends in each different thermodynamic state C. An individual C
may be either pure or mixed, depending on the system and the boundary
conditions used.

The empirical distribution approach presented above was shown in
[NS96b, NS97a] (3, 4) to be equivalent to an earlier construction of Aizen-
man and Wehr. (41) In this alternative approach, the randomness of the
couplings is used directly to generate an ensemble of states. It can be
proved that the two approaches are basically equivalent, in that there exists
at least a J-independent subsequence of volumes along which both
methods yield the same limiting metastate. (4, 5)

Themetastate approach is specifically designed to consider both finite and
infinite volumes together and to unify the two cases. In essence, the metastate
provides the probability, for a randomly chosen large L, of various thermo-
dynamic pure (or ground, atT=0) states appearing inside any fixedLL0 .

We return now to the nonviability of the nonstandard interpretation
of the mean-field RSB theory in realistic spin glass models. Our claim is
based on a simple theorem, presented in [NS98], (6) with a powerful impli-
cation—that (at fixed d and T) the metastate oJ is invariant with respect to
flip-related boundary conditions, chosen independently of the couplings.
That is, the metastate constructed using periodic boundary conditions on
the LL’s is the same as that constructed using antiperiodic boundary con-
ditions. Even if one were to choose two arbitrary sequences of periodic and
antiperiodic boundary conditions, the metastates would still be identical.
The metastate, and its corresponding overlap distributions, is therefore
highly insensitive to boundary conditions.

This metastate invariance has profound consequences. It means that
the frequency of appearance of various thermodynamic states in finite
volumes is independent of the choice of periodic or antiperiodic boundary
conditions. Moreover, this same invariance property holds among any two
sequences of fixed boundary conditions; the fixed boundary condition may
even be allowed to vary arbitrarily along any single sequence of volumes! It
follows that, with respect to changes of boundary conditions, the metastate
is highly robust.

If there were only a single thermodynamic state, such as paramagnetic,
or a single pair of states as in droplet/scaling, this would be expected. But
can this result can be reconciled with the presence of many thermodynamic
states?
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The answer is yes, but it puts severe constraints on the form of the
metastate and overlap distribution functions. In light of this strong
invariance property, any metastate constructed via coupling-independent
boundary conditions should be able to support only a very simple structure,
effectively ruling out the nonstandard interpretation of the mean-field RSB
picture.

How can this invariance property be reconciled with the presence of
many non-symmetry-related pure or ground states? The only plausible
possibility is that in any metastate constructed from coupling-independent
boundary conditions (periodic, antiperiodic, free, fixed, etc.), all pure
thermodynamic states are equally likely. That is, each of these metastates
should be supported uniformly in some appropriate sense (which can be
made precise only with detailed knowledge about the pure states—see, e.g.,
the discussion in Section 4 of [NS98] (6)) on the pure state pairs in that
metastate. This is the only plausible way in which all sorts of different
boundary conditions could give rise to the same pure state distribution.

Such a uniform distribution, though, is inconsistent with the features
of the nonstandard mean-field picture. That picture requires a nonuniform
distribution over the pure states (for further discussion, see [NS98] (6)), as
does any picture in which a nonzero fraction of C’s consists of a nontrivial
mixture of pure state pairs. There is only one many-state picture of which
we are aware that is consistent with this theorem. This is the chaotic pairs
picture, introduced in [NS92] (31) and [NS96b] (3) and further developed in
[NS97a, NS97b, NS98]. (4–6)

The chaotic pairs picture resembles the scaling/droplet picture in finite
volumes, but has a very different thermodynamic structure. It has infinitely
many thermodynamic pure states, but, unlike any mean-field picture, in
each large volume with periodic boundary conditions one ‘‘sees’’ only one
pair of pure states at a time. That is, for large L, one finds that

r (L)J % 1
2 r
aL
J +1

2 r
−aL
J (13)

where −a refers to the global spin-flip of pure state a. So each L picks out
a single pure state pair from the infinitely many present. If all LL have
periodic boundary conditions, then the chaotic pairs picture would exhibit
chaotic size dependence, unlike the droplet/scaling picture. In other words,
in the scaling/droplet picture, the low-temperature, periodic boundary
condition metastate is supported on one thermodynamic mixed state C
consisting of a single pure state pair, and this C is seen in a fraction one of
the LL’s. In chaotic pairs, the metastate is dispersed over infinitely many
C’s, of the form C=Ca=1

2 r
a
J+1

2 r
−a
J ; here, two different LL’s will typi-

cally see different but single pure state pairs.
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The overlap distribution for each C, hence each LL (for L large) is the
same:

PC=1
2 d(q−qEA)+1

2 d(q+qEA). (14)

So the disorder-averaged spin overlap function P(q) and link overlap func-
tion Pe(qe), when constructed by breaking the replica symmetry before
taking the thermodynamic limit, as in Section 2.3, must have the same,
simple structure whether there exists a single pair of thermodynamic pure
states or infinitely many: the spin overlap function P(q) would be a pair of
d-functions at ±qEA, and the link overlap function Pe(qe) a single d-function
at some qe(T) (see later), in either case.

There is a difference in overlap functions in the two pictures, however,
if the thermodynamic limit is taken before replica symmetry is broken, as in
Section 2.2. Here, as already noted, PJ(q) and PJ, e(qe) are, at fixed T and
d, the same for almost every J, regardless of which of the two pictures
actually occurs. In droplet/scaling, PJ(q) is again a pair of d-functions at
±qEA, whereas the link overlap function (computed in a box small compared
to LL and far from the boundaries—cf. Section 2.6) PJ, e(qe)=d(qe−1) at
T=0 and presumably remains a single d-function at all temperatures,
though the qe value where the spike occurs decreases due to thermal fluc-
tuations as T increases. In chaotic pairs, PJ(q) would now most likely
equal d(q): it was proven by the authors (42) that PJ(q)=d(q) for the spin
overlaps of M-spin-flip-stable metastable states for any finite M, and, if
there are infinitely many ground state pairs, we expect the same to be true
for ground states, i.e., for M=.. The form of the edge overlap function in
the chaotic pairs picture, when replica symmetry breaking occurs after
taking L Q., is less clear; the contribution coming from relative interfaces
between the many pairs of pure states may well be a d-function, but unlike
any two-state picture, would be supported on a link overlap qe < 1 even at
T=0. (A lengthier discussion of link overlap functions in given in Section 5.)

Our conclusions are therefore that the thermodynamic overlap structure
in spin glasses must be simple, regardless of whether there are infinitely
many pure states or only a single pair. The form of the overlap function,
however, can depend on how the computation is done. Our results for the
spin overlap function P(q)=PJ(q) are summarized in Fig. 1.

In Fig. 1, the overlap function P(q) is shown for two very different phy-
sical pictures—one a single pure state pair picture, as in droplet/scaling, and
the other the chaotic pairs picture, which presupposes an uncountable
infinity of pure states. When comparing the overlap function for different
scenarios in general, it is important that computations be done in the same
way. Figures 1a and 1b represent overlap computations done on cubes LL
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Fig. 1. The spin overlap function P(q) at T < Tc for: (a) a two-state picture when replica
symmetry is broken before taking the thermodynamic limit; (b) the many-state chaotic pairs
picture when replica symmetry is broken before taking the thermodynamic limit; (c) a two-
state picture when replica symmetry is broken after taking the thermodynamic limit; (d) the
many-state chaotic pairs picture when replica symmetry is broken after taking the thermody-
namic limit (conjectured).

with periodic boundary conditions, while Figs. 1c and 1d represent overlap
computations done in infinite volume on states randomly chosen from the
respective periodic boundary condition metastates.

The insensitivity of P(q) (with all else remaining equal) to these very
different physical pictures indicates one potential problem with using P(q)
for determining ground or pure state structure. Figures 1a and 1b are
identical because in either case a typical finite volume LL ‘‘contains’’ only a
single pure state pair. If one instead looks at the overlap of all of the infi-
nite-volume pure states chosen (in this example) from the periodic bound-
ary condition metastate, as in Figs. 1c and 1d, the difference is evident. In a
two-state picture, one again sees a single pair of delta-functions (Fig. 1c);
the thermodynamic limit here is straightforward because chaotic size
dependence (periodic boundary conditions again are assumed) is absent.
A many-state picture cannot have the same P(q) as the two-state picture
when the replica symmetry is broken after the thermodynamic limit is taken.
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However, rather than the nontrivial P(q) one might expect, the invariance
of the metastate requires a very simple structure, as in Fig. 1d.

The forms of P(q) sketched in Figs. 1c and 1d, however, are computed
using a procedure different from that used in numerical measurements,
which always use procedures corresponding to Figs. 1a and 1b. Therefore
the usual measurements of P(q) seem unable to provide unambiguous
information on pure state multiplicity or structure in realistic spin glasses.
(Other numerical methods for distinguishing between two-state and many-
state pictures are described in [NS92, NS98] (31, 6) and in a more recent
paper (43) by us.) If a measurement of P(q) in a simple geometry (e.g., a
cube) and with simple boundary conditions (e.g., free or periodic) results in
a complicated structure, it is likely that one is not restricting the computa-
tion to a sufficiently small box far from the boundaries (cf. Section 2.6).

2.5. Behavior at T=0

If the coupling distribution is continuous, such as Gaussian, then for
any finite L and, say, periodic boundary conditions, there will be only a
single ground state pair ±sL in LL. If droplet/scaling holds, then this pair
will be the same (when restricted to a region far from the boundaries—see
later) for all large L; if there are infinitely many ground state pairs, then
the pair changes chaotically with L. This will be true at T=0 for any many-
state picture, whether chaotic pairs, mean-field RSB, or some other such
picture. The metastates, hence overlap functions, of these many-state pic-
tures differ only at positive temperature: the mean-field RSB picture at
T > 0 consists of a nontrivial mixture of pure state pairs as in Eq. (12),
while chaotic pairs looks similar at nonzero T to its T=0 behavior. That
is, in chaotic pairs at T > 0, the C appearing in any LL consists of a single
pure state pair, as in Eq. (13).

The overlap distributions in Fig. 1 should therefore apply (either (a)
and (c) or else (b) and (d), depending on whether droplet/scaling or the
chaotic pairs picture is correct) to both zero and nonzero temperatures less
than Tc. The only temperature dependence is in the magnitude of qEA.

It is particularly important to note that there is no difference between
the standard and nonstandard interpretations of the mean-field RSB pictures
at T=0. It follows that overlaps of ground states cannot display nontrivial
ultrametricity, or any other nontrivial structure.

Recent numerical results of Hed et al. (44) have claimed to see a nontri-
vial, hierarchical (though not ultrametric) ground state structure for the ±J
model in 3D. It is important to note that the theorems described in pre-
vious sections apply to discrete coupling models such as ±J as well as to
continuous ones. For all of these, both the absence of non-self-averaging of
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overlap functions and the invariance of the metastate are rigorous conclu-
sions. Overlap distributions must therefore have a simple, or even trivial,
form regardless of the number of ground or pure states. It seems likely,
therefore, that the results of Hed et al. are attributable to local degeneracies
that appear in the ±J model, rather than to any nontrivial large-scale
structures.

2.6. Windows

Before we finish this review, we briefly mention that there remain
subtleties, alluded to in previous sections, in interpreting the results of
overlap measurements. We refer the reader to the Appendix of [NS97b] (5)

for a detailed discussion of the effects of boundary conditions and of dif-
ferent methods of constructing P(q). We also wish to emphasize a point
discussed in detail in Section 6 of [NS98], (6) where we discuss why, in
order to arrive at an accurate picture of the thermodynamic structure and
the nature of ordering of a system, one must focus attention on a fixed
‘‘window’’ near the origin. A window (always defined in reference to the
volume LL under investigation) is a fixed cube LL0 in d dimensions,
centered at the origin, and with 1 ° L0 ° L. The window lengthscale L0
may be arbitrarily large, but must always be small compared to the
lengthscale L of the entire volume LL under consideration. In particular,
when examining the pure state structure of a metastate, a window is simply
any large cube centered at the origin with fixed side L0 ± 1. This is
because the metastate examines pure state structure in a sequence of finite
cubes LL with L Q..

When calculating PL(q) and PLe (qe) in LL, therefore, one needs to do
the overlap computation in a cube LL0 with L0 ° L, rather than in the
entire volume as is usually done. This condition is difficult to achieve
numerically, but cannot be avoided if one wants to draw inferences about
ordering of the low-temperature phase using overlap functions.

This is not to say that computations done in the entire volume carry
no relevant or interesting information, only that their interpretation may be
unclear. Such an example occurs in the numerical studies of Krzakala and
Martin (45) (hereafter [KM]) and Palassini and Young (46) (hereafter [PY]).
These studies claim to have uncovered a new type of excitation, which we
have called KMPY excitations (47) (hereafter [NS01]; however, the numeri-
cal procedures used have been questioned—see the paper by Middleton (48)).
It was rigorously shown in [NS01] that KMPY excitations do not yield
new ground or pure states, but, if they persist on large lengthscales, could
be relevant to the excitation spectrum in finite volumes.
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3. PINNING VS. DEFLECTION OF INTERFACES, AND

THERMODYNAMIC STATES

To pursue further the above idea, and also in preparation for the next
section, we briefly review a basic physical feature that distinguishes ther-
modynamic pure states from (putative) non-thermodynamic ones. The
discussion here will closely follow that of [NS01]; (47) see also Section 6 of
[NS98]. (6)

To simplify the discussion, we focus on ground states; these are the
thermodynamic pure states at T=0. The discussion can be extended to
T > 0 pure states by considering interfaces, equivalently domain walls,
between two spin configurations chosen from different pure states.

Suppose one considers the finite-volume GSP ±sLP corresponding to a
cube LL with periodic boundary conditions and L large. If one then
switches to antiperiodic boundary conditions, a new GSP ±sLAP is gener-
ated. The two ground state pairs will have one or more relative interfaces,
or domain walls, consisting of the set of bonds Ox, yP (in the dual lattice)
satisfying Eq. (5). This finite-size domain wall consists of bonds that are
satisfied in one but not the other GSP; it is the boundary of the set of spins
that are flipped in going from ±sLP to ±sLAP.

The question then arises: how could one know in principle whether there
exists more than one thermodynamic GSP? These are infinite-volume spin
configurations whose energy cannot be lowered by the flip of any finite subset
of spins, and are generated by any convergent sequence of finite-volume
ground state pairs, such as±sLwithL Q. (see Appendix A).

The answer is that if the domain wall between ±sL and ±sŒL is pinned,
then there are multiple ground state pairs. By pinning we mean the follow-
ing. Consider a fixed window of size L0, which though finite can be arbi-
trarily large. Apply the procedure of generating ground state pairs ±sLP by
using periodic boundary conditions on cubes LL, with L ± L0, and ground
state pairs ±sLAP generated with antiperiodic boundary conditions on the
same cubes. Observe ±s (L, L0)P and ±s (L, L0)AP , which are the two ground state
pairs restricted to LL0 . If their relative interface remains inside LL0 as
L Q. , then the interface is pinned. If there are many ground state pairs,
then the interface would converge, along different subsequences of L’s, to
different well-defined limits inside LL0 .

These pinned domain walls are interfaces between true thermodynamic
ground state pairs. This follows because the corresponding spin configura-
tions are limits of finite-volume ground state pairs (see Appendix A).
However, another method of constructing interfaces uses a single boundary
condition (typically periodic) and adds a perturbation, either by forcing
a pair of spins to take an opposite relative orientation from that in the
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ground state, as in [KM], (45) or by adding a bulk perturbation to the
Hamiltonian, as in [PY]; (46) the two methods are believed to give equiva-
lent results. Consider, e.g., the method of Krzakala-Martin. If the interface
is pinned, then one can prove again that it separates true thermodynamic
ground state pairs, as follows. As in [NS01], (47) let the two spins be chosen
randomly for each LL from the uniform distribution on its sites. Because in
the L Q. limit the two sites will, with probability one, be outside any
fixed window, the spin configuration inside the window will have minimum
energy (given its configuration on the boundary of the window). This
proves the desired result, because the resulting infinite-volume spin con-
figuration cannot have its energy lowered by flipping any finite subset of
spins (which would necessarily be inside some fixed window).

Pinning of interfaces by quenched disorder occurs in disordered
ferromagnets (49–51) for sufficiently large d; but these interfaces have lower
dimension than the embedding space. One interesting feature of RSB is the
prediction of interfaces with dimension ds equal to that of the embedding
space; this will be discussed in more detail in the following sections.

On the other hand, if the interface is not pinned, we say it ‘‘deflects
to infinity.’’ Here, for any fixed L0, the interface, for all L above some LŒ,
will be outside LL0 . This is what occurs with interface ground states in dis-
ordered ferromagnets (49–51) for small d; see Fig. 2 for a schematic illustra-
tion. If an interface deflects to infinity, then it does not give rise to new
thermodynamic pure or ground states.

Fig. 2. A sketch of interface deflection to infinity for a 2D disordered ferromagnet under (a)
a change from periodic to antiperiodic boundary conditions, and (b) a change from uniform
plus boundary conditions to Dobrushin boundary conditions (i.e., plus spins on the left half-
boundary of each square and minus on the right). As L increases, the interface recedes from
the origin in each case. The interfaces eventually are completely outside any fixed square. (The
deflection can scale more slowly with L than in the figure.)
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4. FINITE-VOLUME PURE STATES—REPLICA SYMMETRY

BREAKING’S NEW CLOTHES

The various interpretations in Section 2 of what the mean-field RSB
theory could mean for realistic spin glasses all used the usual concept of
‘‘pure state’’ in its well-defined, traditional thermodynamic sense (see
Appendix A). However, in [MPRRZ] (1) it was asserted that the ‘‘pure
states’’ that have played a central role over the past 20 years in the physical
interpretation of the Parisi replica symmetry breaking scheme (9, 12–15) should
not be thought of in this way; instead, the relevant physical objects are
‘‘finite-volume pure states’’ (not to be confused with the usual finite-
volume Gibbs states, as discussed in Appendix A.) Because of the potential
importance of this re-interpretation of the meaning of RSB in terms of
finite-volume pure states, we now review (and critique) this claim in this
section. The theorem and proof that in fact RSB must involve the more
traditional thermodynamic pure states, which is the central result of this
paper, will be presented in subsequent sections.

The main new theoretical idea of [MPRRZ], introduced and dis-
cussed in its Section 3, is the attempt to formalize the relation between RSB
and state structure for short-ranged models via the notion of finite volume
pure states. This interpretation is contrasted with the ‘‘not appropriate use
of Eq. (35) to describe an infinite system.’’ Equation (35) of [MPRRZ] is
simply:

O ·P=C
a

waO ·Pa, (15)

where a is a ‘‘pure state’’ index and wa its Boltzmann weight.
Such a decomposition of course can be done and is well-defined (see,

e.g., the book of Georgii (52)) for the usual thermodynamic pure states a in
infinite volume. It can also be done in a well-defined sense for finite
volumes and is closely related to the idea of ‘‘window overlaps;’’ these ideas
are introduced and discussed in [NS98]. (6) In both cases, our theorems (2–6)

apply and rule out any of the interpretations in Section 2 of the RSB mean-
field picture in finite-dimensional systems. But a central point of [MPRRZ]
is that in RSB theory the decomposition Eq. (15) of a finite-volume Gibbs
state does not involve these traditional pure states, but rather a decomposi-
tion into something else that does not have an infinite-volume definition or
meaning.

This is problematic in that it not only contradicts earlier statements of
the same authors, but also conflicts with other sections within the same
paper. As to the former, references to pure states within the mean-field
RSB scheme that imply the usual thermodynamic definition are too
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numerous to list. As just one example, the RSB literature, whether discuss-
ing infinite-ranged or finite-ranged spin glasses, repeatedly refers to pure
states as those having the clustering property given in Eq. (A4) (see,
for example, [P83], (13) Section 3.6 of [BY], (8) Section 3.1 in [MPV], (9)

[P92] (21)); but clustering appears to be an exclusive property of thermody-
namic pure states. Much of the other terminology frequently used in the
literature, such as ‘‘valleys,’’ is vaguer. Nevertheless, it is hard to interpret
the often-made claim that RSB pure states are separated by infinitely high
barriers (see, e.g., Section 4.5 of [BY] and Section 7.1 (and 3.1) of [MPV]),
or the dynamical assertion that a spin glass in one of these states would
thereafter spend an infinite amount of time in that state (see, e.g., Section 4.5
of [BY] and Section 7.1 (and 3.1) of [MPV]), as referring to anything other
than thermodynamic pure states.

It is implied in Section 3.1 of [MPRRZ] that finite volume pure states
first appeared in a 1987 paper of Parisi (53) (hereafter [P87]), more than a
decade earlier than [MPRRZ]. We believe that this is unjustified. There
does not appear to be any discussion about finite volume pure states in
[P87], but rather discussion about ‘‘pure clustering states.’’ As already
noted, clustering is a property that belongs to standard thermodynamic
pure states. Moreover, in [P87] the pure state decomposition Eq. (15) is
justified several times on the basis of a theorem in Ruelle’s book (54) that is
explicitly about thermodynamic pure states.

Even more seriously, there is a direct contradiction between the claim
that RSB refers only to ‘‘nonthermodynamic’’ pure states and the discussions
in Sections 2.2, 2.3, 8.4, and 8.5 of [MPRRZ], where window overlaps
(cf. Section 2.6) are discussed (see also a paper of Marinari et al. (55)). Equa-
tions (24)–(27) of [MPRRZ] concern the predictions of RSB for the spin
overlap distribution confined to a small region in the center of the cube; i.e.,
a window. But these predictions are precisely those that would be made by
either the standard or the nonstandard interpretation of the mean-field RSB
picture described in Sections 2.2 and 2.3; window overlaps were especially
constructed [NS98] (6) so as to separate properties arising from thermody-
namic pure state structure from those due to boundary or other effects.

The final sentence of [MPRRZ] asserts that ‘‘the recent rigorous
results by Newman and Stein strongly support RSB.’’ Given the discussion
in this section and the earlier demonstration that our results imply that the
only sensible many-state picture is chaotic pairs, it should be clear that we
strongly dispute such a claim. Its basis is discussed in Sections 7.4 and 7.5
of [MPRRZ] (some of which appeared earlier as an unpublished posting
of Parisi (56)). Our discussion about why the arguments used in ref. 56 (and
[MPRRZ]) do not support this assertion is provided in our own
unpublished posting, (57) to which we refer the reader.
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Indeed, we will present later a rigorous result that, regardless of any
new intepretation of RSB based on finite volume pure states, excludes the
possibility that the mean-field RSB theory describes the low-temperature
spin glass phase in any finite dimension.

5. RSB PREDICTIONS FOR LINK OVERLAPS AND DOMAIN WALLS

We turn now to the central argument of our paper. An unambiguous
prediction of the mean-field RSB approach, applied to finite-dimensional
spin glasses, is that the edge overlap distribution function Pe(qe) (Eq. (7)) is
nontrivial on all length scales. Extensive discussion of the predictions of the
RSB theory for realistic spin glasses is given in several places; see in par-
ticular [MPRRZ], (1) [PY], (46) [MP00a] (16) and [MP00b], (17) to which we
refer the reader for details.

It was noted in [MP00a, MP00b] that nontriviality in Pe(qe) at T=0
can be ascribed to the presence of space-filling domain walls between
ground states generated from different boundary conditions, or between
ground and excited states with the latter generated through a perturbation
(cf. Section 3). This important feature of RSB theory can be described in
the following way.

Consider a d-dimensional cube LL, centered at the origin and with
periodic boundary conditions, so that for a given coupling realization JL

inside LL there exists a ground state pair ±sL. Consider as before the spin
configuration generated by forcing a random pair of spins to take on an
opposite orientation from that in ±sL, and then letting the resulting con-
figuration relax to a new state sŒL with minimum energy subject to this
constraint (alternatively, one could add a bulk perturbation as in [PY,
MP00b]. Then a central physical feature of the mean-field RSB picture
([MPRRZ, MP00a, MP00b]) is that ±sL and ±sŒL differ in the following
ways: (1) their difference is global, i.e., there are O(Ld) spins flipped in
going from ±sL to ±sŒL; (2) the lengthscale l of their relative interface
is O(L), and the number of bonds in the interface scales as Lds with
ds=d, i.e., the interface is space-filling; and (3) the energy of the relative
interface remains of order one independently of l=O(L) so that the
domain wall energy scales as lhŒ with hŒ=0. Domain walls with these
properties will henceforth be called RSB interfaces. It is easy to see that,
at T=0, properties (1) and (2) already give rise to nontrivial Pe(qe) (and
conversely that nontrivial Pe(qe) implies the existence of interfaces with
those properties).

What about T > 0? Now, because RSB asserts that each individual
low-temperature Gibbs state is a mixture of several states, it predicts that
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even without any perturbations, there will be nontrivial P(q) and Pe(qe)
inside LL as described in Section 2.1. This prediction relies heavily on
property (3) of the RSB interfaces, namely that their energies are O(1);
if properties (1) and (2) were valid, but not (3), this would lead to the
chaotic pairs picture (cf. Section 2.4) with many states but trivial overlap
distribution.

We note, however, that there is now a problem in interpretation, espe-
cially for Pe(qe), because one needs to disentangle effects due to potential
multiple states from those due to normal thermal fluctuations. One way of
doing this was discussed in Section 5 of [NS92]; (31) here one looks at two dif-
ferent cube sizes and uses the presence or absence of chaotic size dependence
to differentiate between the two effects. We propose another way here. It is
known that, if the probability density function of the couplings is bounded by
a constantC, as in the usual Gaussian coupling case, then (31)

1−OsxsyP
2 [ 2CkBT (16)

in a cube LL with coupling-independent boundary conditions, such as
periodic. Here an overbar represents an average over coupling realizations.
This bound is rigorously obeyed by a Gibbs state generated from a single
boundary condition, regardless of how many pure states it contains.

But now suppose that one generates twoGibbs states at T > 0 in LL, e.g.,
one with and one without a Palassini–Young bulk perturbation ([PY]), as
in [MP00b]. Then it should still be true that the contribution to Pe(qe)
from trivial thermal excitations would remain bounded by O(T), but the
contribution from multiple RSB-like states, if present, would not obey any
such bound. Therefore, at sufficiently low T, thermal contributions to
Pe(qe) should be negligible compared to putative RSB contributions. (As a
consequence, we suggest that results obtained at higher temperatures, like
0.7Tc as in some of the simulations in [MPRRZ], are not useful in verifying
the applicability of RSB theory to realistic spin glasses.)

We now address the central question of this paper: are RSB interfaces,
which comprise a central feature of mean-field RSB theory, compatible
with the claims of [MPRRZ] that a thermodynamic interpretation of RSB
pure states can be avoided? In other words, can RSB domain walls avoid
giving rise to many traditional thermodynamic pure states?

We will provide a proof in the next section that the answer is no; these
central predictions of mean-field RSB theory are rigorously incompatible
with each other. The prediction of RSB interfaces means that multiple
thermodynamic pure states, with properties that have been ruled out in our
previous papers, (2–6) must appear. The mean-field RSB theory is therefore
inconsistent in any finite dimension.
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Before we turn to our rigorous result, we provide a heuristic argument
that illustrates the central idea of our theorem and makes clear why RSB
interfaces must give rise to thermodynamic pure states. Recall from
Section 3 that if a domain wall, generated by switching from periodic to
antiperiodic boundary conditions, is pinned, then it must give rise to ther-
modynamic pure states whose relative interface is that same domain wall.
So in order for RSB interfaces to be both space-filling and not give rise to
thermodynamic pure states, they must deflect out of any fixed region as

Fig. 3. A sketch of RSB interface deflection to infinity, in the situation where a bulk per-
turbation is applied to a volume with periodic boundary conditions at zero temperature, as
described in the text. (Two dimensions is shown only for illustrative simplicity, and is not
meant to imply that mean-field RSB theory is expected to apply there.) In this figure a single,
positive-density interface is depicted. Whether the interface consists of a single or many
domain walls is irrelevant, so long as their union has density that scales as Ld.
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L Q.. The resulting situation is shown in Fig. 3, which would have to
occur on all large lengthscales.

It seems already clear that such a situation is highly improbable; in the
next section we prove that, indeed, it cannot occur.

6. THEOREM AND PROOF

Consider again the pair of spin configurations sL and sŒL discussed in
Section 5. We will use the uniform perturbation metastate introduced in
[NS01]. (47) Here one does for the pair (±sL, ±sŒL) what was done for ±sL

in the original metastate. The resulting metastate gives, among other
things, a translation-invariant (J, D2J), where D2J is a domain wall
measure that provides the (L Q.) probability that a given bond belongs to
the relative domain wall between ±sL and ±sŒL inside an arbitrary large
cube LL.

Now let (±s, ±sŒ) be chosen randomly from the T=0 metastate
described in the last paragraph. The argument in [NS01] shows that, for
almost every (J, ±s, ±sŒ), either ±sŒ=±s or else the two infinite-volume
ground state pairs have a relative interface of strictly positive density (i.e.,
s and sŒ are incongruent, in the terminology of Huse and Fisher (28)). We
therefore already know that if there is a pinned interface at all, it must have
strictly positive density, i.e., ds=d. We now prove the converse as well.

That is, we prove that if such a space-filling interface exists, then the
situation depicted in Fig. 3 cannot happen. Such interfaces must be pinned,
i.e., they have strictly positive probabilities of remaining inside any large
fixed window LL0 as the outer cube size L Q.. Moreover, the fraction of
bonds in the domain wall that remain inside the window scales as (L0/L)d.

Theorem. On each cube LL, consider torus-translation-invariant
(JL, D2J

L), a sequence of random couplings and domain wall measures
(from, e.g., the triple (JL, ±sL, ±sŒL)). Let (J, D2J) be any limit in distri-
bution as L Q. of (JL, D2J

L). Then if the probability that a particular
edge belongs to a domain wall is bounded away from zero as L Q., there
must be at least a positive fraction of the ergodic components of (J, D2J)
that have a positive density of domain walls.

Proof. Because the joint distribution of (JL, D2J
L) is, for every L,

invariant under torus translations, any limiting distribution (J, D2J) is
invariant under all translations of the infinite-volume cubic lattice Zd. The
translation-invariance of (J, D2J) allows its decomposition into compo-
nents in which translation-ergodicity holds (see, e.g., [NS96a, NS97b] (2, 5)).
For each bond Ox, yP consider the event AOx, yP that Ox, yP is in the domain
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wall. If the probability, with respect to (JL, D2J
L), of the event AOx, yP

occurring in LL is larger than some fixed r > 0 independent of L, then any
limiting measure must also have the probability that AOx, yP occurs being
strictly positive (and greater than r). Because the translation-invariant
measure (J, D2J) therefore hasAOx, yP occurringwith a probabilityP(AOx, yP) >
r > 0, it follows that in a positive fraction of its ergodic components, the
probability of AOx, yP occurring is also strictly greater than zero. In each of
these ergodic components, by the spatial ergodic theorem (see, e.g., [NS96a,
NS97b]) the spatial density of Ox, yP’s such that AOx, yP occurs must equal a
strictly positive number, i.e., the interface has a nonzero density.

Remark 1. Although the theorem as formulated here addresses
domain walls between ground states, it should be extendable to domain
walls between spin configurations chosen from different pure states at low
temperature, by ‘‘pruning’’ small thermally induced droplets. (47)

Remark 2. Note that the third property of RSB interfaces, namely
that their energy remains of O(1) independently of L, was not needed; the
theorem applies to any space-filling domain wall constructed as discussed.
The theorem therefore applies to RSB excitations as a special case, but to
other kinds as well. These will be discussed further in Section 7.

We now apply the theorem to RSB interfaces. These satisfy the condi-
tion that the probability that an arbitrarily chosen bond belongs to a
(±sL, ±sŒL) domain wall is bounded away from zero as L Q.. It there-
fore follows that, if RSB interfaces exist, and if one chooses a random
infinite-volume GSP (±s, ±sŒ) from the metastate, then there must be a
positive probability that any given bond belongs to that interface. This is
equivalent to the statement that, for every L as L Q., there is a positive
probability of finding an RSB interface inside any fixed window LL0 of
arbitrary (but finite) size L0.

Moreover, if pinned RSB interfaces are present at T=0, then they
would presumably give rise to multiple pure state pairs at low but nonzero
temperature. Here it would be the case that, in addition to the expected
thermal fluctuations, two spin configurations, each randomly chosen from
different pure states (not globally flip-related), would have a relative RSB
interface. Equivalently, one could determine the existence of these positive-
temperature interfaces by examining the thermal expectations of, e.g., two-
point correlation functions.

It follows that the mean-field RSB theory must give rise to multiple
thermodynamic ground state pairs at T=0, and by extension, pure state
pairs as conventionally defined (cf. Appendix A) also at low T.
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7. DISCUSSION AND CONCLUSION

We have shown that the claim in [MPRRZ] (1) (elaborated on in Sec-
tions 3 and 7 of that paper) that mean-field RSB theory does not give rise
to the usual thermodynamic pure states is in rigorous contradiction with
the simultaneous claim that the theory also predicts interfaces (equi-
valently, nontrivial link overlap distribution functions) with the properties
delineated in Section 5. Then, in short-ranged spin glasses in finite dimen-
sions, either there are no interfaces that are both space-filling, with ds=d,
and have energy of O(1), or else there are and they comprise domain walls
between distinct thermodynamic pure state pairs. We investigate each of
these possibilities in turn.

The first possibility is that there are no domain walls that are both space-
filling and have O(1) energy. Suppose we relax the second requirement, so
that the energy of the interface increases with L. The simplest possibility is
that this energy scales as LhŒ with hŒ > 0, although more slowly increasing
functions are also possible (e.g., log(L)); but because the argument is the
same for both, we simply examine the case hŒ > 0. But when hŒ > 0, one reco-
vers (6) the chaotic pairs picture, as noted in Section 5; multiple pure state pairs
cannot now coexist at anyTwithin a singleLL with largeL.

Relaxing the first requirement implies that there are either no domain
walls at all, in which case one recovers a two-state picture, or else there are
interfaces with ds < d. The latter would not be seen in any T=0 metastate
constructed using coupling-independent boundary conditions, (43, 58) and
may or may not give rise to new pure states at T > 0 depending on how
they are constructed; an extensive discussion is given in [NS01]. (47) In
either case any metastate constructed using coupling-independent boundary
conditions would see at most only a single pair of pure states (cf. the
discussion of ‘‘invisible’’ states within the metastate given in Section 5 of
[NS98] (6)).

We turn now to the second possibility in which space-filling domain
walls of O(1) energy are present on all lengthscales. Now the theorem in
Section 6 necessitates the existence of multiple pure state pairs so that the
thermodynamic states C (cf. Section 2.4) would be mixed states at T > 0.

The conclusion is that regardless of any re-interpretations of the
‘‘meaning’’ of the RSB ansatz for finite-dimensional spin glasses, it has an
unambiguous prediction for the structural difference in ground states gen-
erated in a large cube when a KMPY-type perturbation ([KM, PY] (45, 46)),
as examined in [MP00b], (17) is applied. This prediction is the presence of
space-filling interfaces. But we have shown here that this feature gives rise
to multiple infinite-volume pure states. So the RSB ansatz predicts these
multiple thermodynamic states whether it was originally intended to or not.
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Moreover, given that these RSB interfaces have energies of O(1), the
thermodynamic states they give rise to would necessarily appear as mixed
states in large finite volumes, as in Eq. (12). But this possibility was ruled
out in our earlier papers (2–6) (and was disavowed in [MPRRZ]).

Mean-field RSB theory therefore can not describe the low-tempera-
ture structure of the spin glass phase in any finite dimension, although of
course RSB theory presumably remains valid for infinite-ranged models. If
the low-temperature spin glass phase displays multiple pure states in any
finite dimension, their structure would have to be given by the chaotic
pairs picture of [NS96b, NS97, NS98] (3, 5, 6) and spin overlap structures
inside any window would be trivial regardless of how the overlaps are
constructed.

APPENDIX A. GIBBS STATES IN FINITE AND INFINITE VOLUME

In this appendix, we present some background information about
Gibbs states, closely following the discussion in [NS97]. (5) Given the EA
Hamiltonian (1) on LL with a specified boundary condition (e.g., free,
fixed, periodic, etc.), the finite-volume Gibbs state r (L)J, T on LL at tempera-
ture T is defined by:

r (L)J, T(s)=Z−1
L, T exp{−HJ, L(s)/kBT}, (A1)

where the partition function ZL, T is such that the sum of r (L)J, T over all spin
configurations in LL yields one.

The finite-volume Gibbs state r (L)J, T(s) is a probability measure,
describing at fixed T the likelihood of a given spin configuration obeying
the specified boundary condition appearing within LL. Equivalently, the
measure is specified by the set of all correlation functions within LL, i.e., by
the set of all Osx1 · · ·sxmP for arbitrary m and arbitrary x1,..., xm ¥ LL.

A thermodynamic state rJ, T is defined as an infinite-volume Gibbs
measure, containing information such as the probability of any finite subset
of spins taking on specified values. Thermodynamic states can be con-
structed by taking the L Q. limit of a sequence of finite-volume Gibbs
states r (L)J, T(s), each with a specified boundary condition (which may
remain the same or may change with L). The idea of a limiting measure can
be made precise by requiring that every m-spin correlation function, for
m=1, 2,..., possesses a limit. Infinite-volume Gibbs measures rJ, T can also
be characterized independently of any limiting process, as probability
measures on infinite-volume spin configurations that satisfy the Dobrushin–
Lanford–Ruelle (DLR) equations (for a mathematically detailed presenta-
tion, see the book of Georgii (52)).
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Thermodynamic states may or may not be mixtures of other thermo-
dynamic states. If a Gibbs state rJ, T can be decomposed according to

rJ, T=lr
1
J, T+(1−l) r2J, T, (A2)

where 0 < l < 1 and r1 and r2 are also infinite-volume Gibbs states (dis-
tinct from r), then rJ, T is a mixed thermodynamic state or simply, mixed
state. A mixed state may have as few as two or as many as an uncountable
infinity of states in its decomposition. The meaning of Eq. (A2) can be
understood as follows: any correlation function computed using the ther-
modynamic state rJ, T can be decomposed in the following way:

Osx1 · · ·sxmPrJ, T=lOsx1 · · ·sxmPr1J, T+(1−l)Osx1 · · ·sxmPr2J, T . (A3)

If a state cannot be written as a convex combination of any other
infinite-volume Gibbs states, it is then a thermodynamic pure state. As an
illustration, the paramagnetic state is a pure state, as are each of the posi-
tive and negative magnetization states in the Ising ferromagnet. In that
same system, the Gibbs state produced by a sequence of increasing
volumes, at T < Tc, using only periodic or free boundary conditions is a
mixed state, decomposable into the positive and negative magnetization
states, with l=1/2. A thermodynamic pure state rP can be intrinsically
characterized by a clustering property (see, e.g., refs. 52 and 59), which
implies that for any fixed x,

OsxsyPrP −OsxPrP OsyPrP Q 0, |y| Q., (A4)

and similar clustering for higher order correlations.
Finite-volume Gibbs states, which are well-defined probability mea-

sures, should not be confused with the putative ‘‘finite-volume pure states’’ of
[MPRRZ], (1) which have not been clearly defined. A finite-volume Gibbs
state can have an approximate decomposition into thermodynamic pure states
restricted to a ‘‘window’’ (6) deep inside LL, as in Eq. (2). Whether a similar
decomposition of finite-volume Gibbs states into ‘‘finite-volume pure states’’
can be made is unclear; it would at the least require making the notion of
finite-volume pure state more precise.

APPENDIX B. GLOSSARY

We include this glossary for the reader’s convenience. All definitions
here are informal. Terms that have appeared only recently in the literature,
or that may be less familiar, are also defined within the text; in such cases,
the section where they are first defined is also noted.
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Chaotic Pairs Picture. A scenario for the low-temperature spin glass
phase in which there exist infinitely many (incongruent) pure state pairs (for
a.e. J) at all temperatures below Tc, but with probability one only a single
one of these pairs would be seen in any large volume with periodic boundary
conditions. The overlap function computed in any large volume is therefore
indistinguishable from a two-state picture like droplet/scaling (cf. Fig. 1).
However, the pair chosen varies chaotically with volume. (Section 2.4.)

Chaotic Size Dependence. Inside any large volume LL with spe-
cified boundary conditions, the Gibbs state is approximately either a single
pure state (e.g., in a homogeneous Ising ferromagnet, one has a paramag-
net above Tc for any boundary condition, the magnetized plus state below
Tc for all plus spins at the boundary, etc.), or else an approximate decom-
position over pure states as in Eq. 12 (e.g., in the same system below Tc the
Gibbs state is an equal mixture of the magnetized plus and minus states).
Chaotic size dependence occurs when the pure states and/or weights vary
persistently as L is increased, so that there is no limiting infinite-volume
Gibbs state. (Sections 2.1 and 2.4.)

Deflection to Infinity. Consider an interface between two ground or
pure states in LL generated either by a change in boundary condition (e.g.,
periodic to antiperiodic), or by addition of a perturbation with a single
boundary condition. Consider a volume LL0 of arbitrary but fixed side L0.
If, for any L0, the relative interface eventually moves (and stays) outside of
LL0 as L Q., the interface has ‘‘deflected to infinity.’’ See Fig. 2 for an
illustration. (Section 3.)

Droplet/Scaling. A two-state picture (see later) whose properties
follow from a scaling ansatz developed by Macmillan, (24) Bray and
Moore, (25, 26) and Fisher and Huse; (27–30) the last of these fully developed the
physical droplet picture corresponding to the scaling ansatz, which
followed from ‘‘domain wall’’ renormalization-group studies of the first
two groups. In this picture, the thermodynamic and dynamic properties of
spin glasses at low temperature are dominated by low-lying excitations
corresponding to clusters of coherently flipped spins. The density of states
of these clusters at zero energy falls off as a power law in lengthscale L,
with exponent bounded from above by (d−1)/2. At low temperatures and
on large lengthscales the density of thermally activated clusters is dilute and
they can be considered as non-interacting two-level systems.

Ground State. In a finite volume LL, the lowest-energy state(s) con-
sistent with the boundary conditions. A convergent sequence of finite-volume
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ground states yields an infinite-volume ground state, which is simply a pure
state (as in Appendix A) at T=0. An infinite-volume ground state can
alternatively (and often more usefully) be defined as an infinite-volume spin
configuration whose energy cannot be lowered by the flip of any finite
subset of spins. (Section 3.)

Ground State Pair (GSP). In the absence of an external field or spin-
flip symmetry breaking boundary conditions, ground states occur in pairs
related by a global spin flip.

Incongruence. Two spin configurations are incongruent (a notion
introduced by Huse and Fisher (28)) if they differ by a relative flip along a
space-filling interface; that is, a nonzero density of bonds is satisfied in one
but not the other spin configuration. If the relative interface has zero density,
the spin configurations are said to be regionally congruent. (Section 6.)

Pinning. Given the same scenario as in the definition of deflection to
infinity above, the interface remains inside a sufficiently large volume of
fixed size L0 as L Q.. (Section 3.)

Metastate. A probability measure on infinite-volume thermodynamic
states that carries all relevant thermodynamic information about a system.
In the current context, the metastate provides, among other things, the
probability of appearance of various pure or ground states appearing within
a large finite volumeLL with specified boundary conditions. (Section 2.4.)

RSB Interface. An interface between two globally different spin con-
figurations (that are not global flips of each other) that has the properties
of being both space-filling and also of having approximately order one
energy independently of lengthscale. (Section 5.)

Two-State Picture. A scenario for the low-temperature spin glass
phase in which there exists only a single pair of (spin-flip-related) pure
states at all temperatures below Tc. Although not used in the text, we note
that these can be divided into at least two kinds. A strong two-state picture
is one where there are no more than two pure states at any temperature, as
in the droplet/scaling picture. A weak two-state picture is one where there
exists a ‘‘special’’ pair of pure states that supports any metastate generated
by coupling-independent boundary conditions, but in which there also
exist other pure states that can be generated only by coupling-dependent
boundary conditions. These latter states are ‘‘invisible’’ in any coupling-
independent b.c. metastate. (This possibility for spin glasses is very briefly
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discussed in Section 7.) An example of a weak two-state picture could be
the homogeneous Ising ferromagnet, at T=0 in two dimensions and below
the roughening temperature in three and higher dimensions. Here the
special pair is the uniformly magnetized plus and minus states, while the
others are the interface states.

Ultrametricity. In the spin glass context, the property that the joint
overlap statistics of any three pure states with overlaps q1, q2, and q3 satisfy
the condition q1=q2 [ q3, consistent with a hierarchical pure state structure.

Window. Given a large volume LL with specified boundary condi-
tions, a window is an interior volume LL0 with 1 ° L0 ° L. Both LL and
LL0 are centered at the origin. We argue in [NS98]

(6) that an overlap com-
putation must be done inside a window if it is to reveal any unambiguous
information about pure state structure. (Section 2.6.)
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